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Market Statistics and Technical
Analysis: The Role of Volume

LAWRENCE BLUME, DAVID EASLEY,
and MAUREEN O’'HARA*

ABSTRACT

We investigate the informational role of volume and its applicability for technical
analysis. We develop a new equilibrium model in which aggregate supply is fixed
and traders receive signals with differing quality. We show that volume provides
information on information quality that cannot be deduced from the price statistic.
We show how volume, information precision, and price movements relate, and
demonstrate how sequences of volume and prices can be informative. We also show
that traders who use information contained in market statistics do better than
traders who do not. Technical analysis thus arises as a natural component of the
agents’ learning process.

TECHNICAL ANALYSIS OF MARKET data has long been a pervasive activity in
both security and futures markets. Technical analysts believe that price and
volume data provide indicators of future price movements, and that by
examining these data, information may be extracted on the fundamentals
driving returns.! If markets are efficient in the sense that the current price
impounds all information, then such activity is clearly pointless. But if the
process by which prices adjust to information is not immediate, then market
statistics may impound information that is not yet incorporated into the
current market price. In particular, volume may be informative about the
process of security returns.

In this paper we investigate the informational role of volume. That volume
may play an important role in markets has long been a subject of empirical
research (see, for example, Gallant, Rossi, and Tauchen (1992); Karpoff
(1987) provides an excellent review of previous research). This research has
documented a remarkably strong relation between volume and the absolute

*Blume and Easley are from the Department of Economics, Cornell University and O’'Hara is
from the Johnson Graduate School of Management, Cornell University. We would like to thank
David Brown, Sanjeev Goyal, Matt Spiegel and seminar participants at Cornell, Duke, Harvard,
Rutgers, the Stockholm School of Economics, Vanderbilt, the Western Finance Association
meetings, the European Finance Association meetings, and the Winter Finance Research Confer-
ence for helpful comments. We also appreciate the helpful comments of an anonymous referee
and the editor, René Stulz.

! The classic work on technical analysis is generally regarded as Edwards and Magee (1957). A
more recent work that also details the explicit role of volume in technical analysis is Pring
(1991). Neftci (1991) and Brock, Lakonishok, and LeBaron (1992) provide empirical testing of
some common rules used in technical analysis of price changes. The latter paper suggests that
positive returns may accrue to at least some price-based technical strategies.
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value of prices changes in both equity markets and futures markets. But why
such a pattern exists or even how volume evolves in markets is not clear. Our
goal in this research is to determine how the statistical properties of volume
relate to the underlying value of the asset and to the behavior of market
prices. By establishing these properties, we hope to show what traders could
learn from volume and how this could provide one explanation for the use of
volume-based technical analysis in markets.

A natural starting place for our research would seem to be the recently
developed models looking at the information content of price sequences. In
particular, Brown and Jennings (1989) and Grundy and McNichols (1989)
consider rational expectations models in which a single price does not reveal
the underlying information but a sequence of security prices does. These
papers demonstrate that technical analysis of price patterns may be valuable
because it facilitates the learning ability of traders. But adapting such models
to investigate the role of volume reveals an immediate problem: In standard
rational expectations models with aggregate supply uncertainty, volume
plays the role of adding noise to the model. Allowing traders to observe
volume essentially allows them to know the aggregate supply and this results
in a fully revealing single price. In this framework, the informational role of
volume is large, but vacuous. With no role to play other than noise, volume in
these models can never provide insights into underlying economic fundamen-
tals or give guidance to the process by which information is impounded into
the price.

In this paper, therefore, we develop an alternative equilibrium approach
for studying the behavior of security markets. Our model is standard in that
some fundamental is unknown to all traders and traders receive signals that
are informative of the asset fundamental. However, in our model aggregate
supply is fixed. The source of noise is the quality of the information; specifi-
cally the precision of the signal distribution. Prices alone cannot provide full
information on both the magnitude of the signals and their precision. We
show that volume provides information about the quality of traders’ informa-
tion that cannot be deduced from the price statistic. We also show how
sequences of volume and prices can be informative, and demonstrate that
traders who use information contained in the market statistic will do “better”
than traders who do not. In our model, technical analysis arises as a natural
component of the agents’ learning process.

This property of traders using the information contained in volume is a
unique and important feature of our model. In other models of volume (see for
example Campbell, Grossman, and Wang (1991), Harris and Raviv (1991)
and Wang (1991)), volume is interesting for its correlation with other vari-
ables, but in itself is unimportant: Traders never learn from volume nor use
volume in any decision making. By contrast, in our model volume enters
traders’ learning problems because they use the specific volume statistic in
updating their beliefs. Consequently, volume matters in our model because it
affects the behavior of the market, rather than merely describes it.
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Our construction of sequences of price and volume also allows us to make
predictions about the equilibrium properties of price, price changes, and
volume. Our model demonstrates why volume and the absolute value of price
changes are positively correlated, and provides interesting comparative static
predictions of the effects of information precision and dispersion on the
price-volume relationship. Such predictions may be useful to researchers
interested in a wide variety of issues in accounting and finance. From a time
series perspective, our model provides an intriguing result on the equilibrium
behavior of volume. We show that although all traders will learn the asset’s
value, and prices will thus converge to the full information or strong form
efficient price, volume does not converge to zero. In fact, volume has a limit
distribution that is nondegenerate. This demonstrates that markets do not
shut down as beliefs converge and has the important implication that the
“no-trade” equilibrium results so prevalent in the literature may not describe
the limit behavior of equilibrium models with learning. Finally, our model
also shows why technical analysis of price and volume data can be valuable
and provides predictions regarding the type of firms for which it will be
particularly useful. Thus, we provide one explanation for the paradoxical
existence of technical analysis in seemingly efficient markets.

The paper is organized as follows. In the next section we consider how
allowing agents to condition on both prices and volume affects the equilib-
rium in the standard rational expectations random supply framework. Our
purpose in doing so is to demonstrate why such models fail in the presence of
volume, and to delineate what must be changed if volume is to be incorpo-
rated (and analyzed) in an economically meaningful way. We then investigate
in Section II what information is provided by price and volume statistics in a
new model in which agents condition on prior market outcomes and there is
no aggregate supply uncertainty. Section III examines how the sequence of
price and volume statistics reveals information, and provides results on the
time series of price and volume. Section IV shows how technical analysis
based on price and volume can make agents better off. The paper’s final
section is a conclusion.

I. Price, Volume, and Technical Analysis

We begin our analysis by examining the role of volume and trade information
in the standard rational expectations framework typically employed to inves-
tigate how market clearing prices reflect underlying information, and how
agents, in turn, learn from prices. Our approach in this section is to investi-
gate simplified versions of models developed by Brown and Jennings and
Grundy and McNichols that address the role of price data in technical
analysis. These models share a common rational expectations approach, but
introduce aggregate supply uncertainty in different ways. As we show, this
difference results in major differences in equilibria when volume data are
introduced. After investigating the role of volume and trade information in
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the Brown and Jennings model and then in the Grundy and McNichols
framework, we summarize the problems revealed in the standard approach,
and detail how theoretical models must be changed to provide a meaningful
analysis of price and volume data.

In the standard approach (see Grossman and Stiglitz (1980)), a collection of
agents, indexed by i = 1,..., I, trade a risky asset and a riskless asset in a
single market. Both Brown and Jennings and Grundy and McNichols con-
sider the limit case where the number of agents I is infinite. In this standard
model, trades may occur at time 1 and at time 2. We analyze only time 1 and
so do not include time indices. At the end of trading, the riskless asset pays a
known dividend of 1 and the risky asset pays a liquidating dividend given by
the random variable . Traders begin with identical beliefs about the payoff
¥, which are represented by a normal distribution N(¢,, 1/p,).

Traders maximize negative exponential utility functions defined on final
wealth (or consumption) of the form

U(w,;) = —expl —w;] (1)

where w; is agent i’s terminal wealth (we have fixed the coefficient of
absolute risk aversion at one). Final period wealth depends on the agents’
trading decisions and the assets’ payoffs, and so can be written as w; = d;¢ +
n;, where d; is agent i’s demand for the risky asset and n; is the number of
units of the riskless asset that have a price normalized to one.

Before the start of period 1, each trader receives an endowment of n, units
of the riskless asset. Each trader also receives a private signal, y;, on the
value of the risky asset which is given by

yi=y¢te 2)

where the distribution of each e; is N(0, 1/p). Because the signals’ errors are
assumed normally distributed with finite variances and are independent
across traders, it follows that the average signal, ¥y = £!_,y,/I, converges to
¢ with probability 1 as the number of traders grows large.

In the Brown and Jennings framework, there is an exogenous supply of the
random asset given by the random variable X, with per capita supply X /I,
denoted x. As is the case with all random variables in the model, x is
normally distributed and is independent of any private signals. Equilibrium
requires that

1
x=).d;/I (3)

i=1

or simply that per capita demand equal per capital supply.

In rational expectations models of the form considered here, equilibrium
involves a set of price and demand functions that satisfy the following
properties. First, given their information sets H*® (to be specified later) agents
conjecture the equilibrium price function. Based on these price functions and
an observation of the equilibrium price, traders determine their demands for
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the risky asset. In an equilibrium, these price conjectures will be correct and
per capita demand will equal per capita supply.

To construct such an equilibrium, suppose that each trader conjectures
that the price of the risky asset, p, is a linear function of aggregate informa-
tion (¥) and per capita supply (x):

p = ayp, + By — yx. (4)

Then, the posterior distribution of ¢ given H ! = (y,, p) is normal with mean
E[y|H'] and variance Var[|H"]. Trader i’s demand is then

E[y|H'] —p
d; = Var[y|H'] ~ ®)

Using the equilibrium condition (3), Brown and Jennings then solve for the
equilibrium price. They show that it is linear as conjectured and that the
coefficient on x is not zero. Thus, prices are not revealing. This allows Brown
and Jennings to demonstrate how a sequence of prices could provide informa-
tion that a single price observation could not, and thus provides a role for
technical analysis.

Now, we suppose that contemporaneous volume data is publicly available.?
Volume is typically defined as the number of shares of the risky asset that
are traded. Since every trade involves a buyer and a seller, volume could be
calculated by simply adding up all buy orders or all sell orders. An equivalent
approach in a Walrasian equilibrium is to sum the absolute value of traders’
demands and divide by two.?

If traders do know volume in the Brown and Jennings framework, then the
role for technical analysis dissipates. What causes this to happen is that, if
traders use the information conveyed by volume and their own trading
behavior, there is a revealing equilibrium. Consequently, with all information
revealed to traders, there is no benefit to considering the sequence of prices.
To see why this occurs, suppose we let traders condition on per capita volume
and the direction of their own trade (i.e., either a buy or a sell).* Their

%2 We conduct a Walrasian analysis and so do not ask how such equilibria could be attained.
This is a problem even for rational expectations equilibria without conditioning on volume.
Blume and Easley (1990) show that absent some restrictive conditions there does not exist a
mechanism that would implement rational expectations equilibria. We view equilibria with
conditioning on contemporaneous market statistics as one of several possible approximations to
actual market processes. In Section III, we explore an alternative approximation that we find
more appealing.

We consider Walrasian equilibria. There is no market maker, so we do not worry about
inventory affecting the total quantity traded. If traders have endowments of the risky asset then
we need to sum the absolute value of the trader’s net demands (see equation (8)).

* If traders are not allowed to condition on the direction of their own trade, or if they have
differing endowments so that they cannot infer the sign of x from their trade, then the only
equilibrium would be nonrevealing. However, the distribution of  given their information could
not be normal so finding this equilibrium would be a formidable task.
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information set is now H' = (p, y,,V, J) where J is an indicator variable
denoting whether the trader buys or sells, and (per capita) volume is defined

1
by V = 2—I(Zf=1ldil + | X)). Further, let traders conjecture that the equilib-

rium price function is given by (4) and that price and volume together will be
revealing. In this case, each trader’s demand function is given by®

d; = (g po +¥Ip) — p(py + Ip) (6)
and the price function is given by
p=po+ylp—x)/Cpy + Ip). @)

To show that these equations describe an equilibrium, we need to show
that the traders’ conjectures are correct and that the market clears. First,
note that in a revealing equilibrium, every trader will demand the same
amount of the risky asset, ie., d; = d;=d for all i and j. So per capita
volume will be é (Id| + |x)). Now market clearing yields d = —x, so V = |x|.
Thus, each trader infers that x = —V if he is a buyer, i.e,, d; > 0, or x = V if
he is a seller, i.e., d; < 0.° Using this inferred value for x and the market
price, p, each trader inverts the price equation (7) to solve for y. Given
knowledge of ¥, the optimal demand for any trader is given by (6). It is easy
to check that the price given by (7) clears the market when demands are
given by (6). Thus, traders have equal demands and their conjectures are
correct. Once you know volume, therefore, you can infer the underlying
supply uncertainty, prices are revealing, and technical analysis has no role.

Interestingly, the opposite conclusion arises from the Grundy-McNichols
approach: volume is devoid of any useful information whatever. The reason
for this lies in the uncertainty structure of their model. Unlike the random
aggregate supply feature of the Brown and Jennings model, Grundy and
McNichols introduce uncertainty by assuming that each of the I traders in
the market receives a random endowment of the risky asset. These endow-
ments, x;, are assumed independently and identically normally distributed
with mean u, and variance ¢,%I. In this model, some traders receive negative
quantities of the risky asset, some receive positive quantities, and trade
presumably arises in part to rebalance portfolios.

To ensure that individual traders’ endowments carry no information about
per capita supply x, Grundy and McNichols consider only the limit economy.
In this economy, the variance of x is infinite and the Law of Large Numbers
cannot be applied. Note that this assumption of the limit economy (infinite

® Those expressions are for any finite economy. The limit economy is degenerate with p = .
Grundy and McNichols consider the limit to avoid the computational difficulties that arise when
individual endowments carry information. That is not a problem here as price and volume are
already fully informative. In any case, the limit would be no problem in any economy in which
the aggregate signal ¥ was not perfect. For example, the common error model used in Brown and
Jennings would work.

6 Obviously, a trader could also infer x from his own demand. We address this possibility later
in this section.
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traders) is fundamental to their approach. If we consider the finite economy,
then there is a finite variance and endowments must provide some informa-
tion. Each trader also receives a private signal y;, = ¢ + w + &; where ¢ is
the per unit payoff from the risky asset, w is a common error, and ¢; is an
idiosyncratic error.
If we examine per capita volume in the limit economy we find the distract-

ing feature that it is infinite. In particular, per capita trading volume is

1 11

2 Ih—l;noo I Elld‘ =l : ®

where d, is trader i’s equilibrium demand and x; is his endowment. Asymp-
totically, d; and x; are uncorrelated, but x; has infinite variance. Thus, per
capita volume is infinite and it provides no information about the value of the
asset.’

The fundamental difficulty is the underlying supply structure. Whether
supply is introduced by an exogenous random supply or by random endow-
ments, if volume reveals anything it reveals the supply. Consequently, if we
allow traders to condition on contemporaneous volume, it is essentially
allowing them to remove the “noise” in the pricing equation.® With prices
then depending only on private signals, the only known equilibrium is one in
which price reveals the underlying information.

In this context, volume provides no useful information about any funda-
mentals relating to the asset but rather is exogenously determined. It seems
more reasonable to believe that the volume statistic should capture some
endogenous aspect of the trading process not necessarily incorporated in
prices. In particular, since volume arises from individual demands, it may be
the case that volume reflects aspects of the information structure that traders
might wish to know.’

But a second difficulty arises in investigating this role. This is the problem
created by conditioning on contemporaneous information. Even if volume has
some meaningful economic role, when traders use the information conveyed
by contemporaneous volume, the only revealing equilibrium is the anomalous
one in which volume actually has no information. To see why this is so,
consider a Grossman-Stiglitz—style model without the modelling device of

" Our analysis applies to first-period volume, but would apply equally well to volume in any
period in which new endowments were distributed as they were in period one. Grundy and
McNichols consider volume in period two where no new endowments arrive, and so per capita
volume is not infinite. They provide some interesting results on when the “no-trade” equilibrium
results break down and volume, per se, is positive. They do not consider the possibility of
conditioning on volume, which is the focus of our concern here.

8 An interesting analysis of the role of noise in noisy rational expectations models is given by

Bhattacharya and Spiegel (1991).
" 91n a market microstructure model, Easley and O’Hara (1992) demonstrate that volume may
provide information on the existence of new information. In their model, however, trades occur
sequentially, so that the information content of volume differs from the role it plays in a call
market, rational expectation framework.
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random endowments or random supply. Suppose that traders have common
preferences and endowments and receive payoff-relevant signals. Now, sup-
pose that there exists a revealing rational expectations equilibrium with
conditioning on price and volume. In this equilibrium, traders have common
information and they all choose the same trade. But the only such trade that
is consistent with market clearing is no trade, and so regardless of the
signals, volume is zero—and carries no information.!® Alternatively, there
could be nonrevealing equilibria in which traders condition on price and
volume. However, as volume is a sum of absolute values it cannot be normally
distributed. So although such an equilibrium might exist there seems to be no
hope of constructing it, and hence no hope of using a contemporaneous data
approach to study volume.

One way to avoid these difficulties is to allow traders to condition on all
information up to but not including the market statistic resulting from their
desired trade. This approach, first suggested by Hellwig (1982), avoids the
simultaneity problem noted above while retaining the ability to learn from
market information. Blume and Easley (1984) use this approach to examine
the information content of past market prices. In this paper, we use such
conditioning on existing market statistics to investigate the role of price and
volume.

This approach, like the approach of conditioning on contemporaneous data,
is an abstraction. We offer two justifications for it. First, traders who submit
market orders do not know the price at which their order will execute until
after the trade occurs. Even traders who use limit orders cannot condition
their quantity perfectly on price unless they use incredibly and unrealisti-
cally complex orders. But unless traders know the price at which they will
trade, and use the information the price contains in selecting their trade, the
usual rational expectations approach is not valid. Hence, actual market
settings are not consistent with contemporaneous conditioning requirements,
but are compatible with the conditioning requirement we consider. Second,
asset markets such as the New York Stock Exchange are never in a Wal-
rasian equilibrium: The market is a dynamic process in which continual
adjustments occur. The fiction of a Walrasian equilibrium is itself an approxi-
mation to workings of the market. Whether this oversimplified description is
best constructed with conditioning on past or contemporaneous data depends
on how well each model serves its intended purpose.

10 The assumption that preferences and endowments are identical is not necessary. Suppose
traders have constant absolute risk aversion utility functions of the form —exp(—R;w;) and
endowments y;. If price and volume are revealing, then volume must be

1

PR

%9,

R.s,(/R)

But this does not depend on private information. So unless price alone was revealing, price and
volume cannot be revealing.
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Conditioning on predetermined rather than contemporaneous information
has another advantage. If traders can condition on contemporaneous price
information, they can also condition on the information contained in their
own net trade.!! If we include his own net trade in each individual’s informa-
tion set the conventional equilibrium remains as an equilibrium. But there
are others as well. Jordan (1983) has shown that with these information sets
there always exists a revealing equilibrium.!?> Furthermore, the revealing
equilibrium is in a sense more natural as it is robust to the model specifica-
tion (i.e., exponential utilities and normal distributions) whereas the conven-
tional equilibrium is not robust. Analyses with conditioning on contempora-
neous information thus finesse a delicate equilibrium selection problem
which does not arise when traders use past information.

In the next section, we investigate how traders learn from market informa-
tion by developing a Walrasian model in which traders are allowed to use the
information conveyed by all past prices and volumes. In our model, price and
volume data each convey information about the underlying asset value but
the type of information they convey differs. As we demonstrate, this provides
a role for technical analysis in which both price and volume data are useful.
It should be noted that by technical analysis we do not mean using market
statistics from the previous period to infer information from that period. As
we do not allow conditioning on current endogenous data, this use of past
data occurs by assumption. By technical analysis we mean the use in period ¢
of market statistics from periods ¢ — 1, t — 2,...,to make inferences about
the future value of assets.

II. The Information Content of Volume

We consider a repeated asset market in which agents can trade a risk-free
and a risky asset. All trade is between the agents we model; there is no
exogenous supply of any asset. Each agent maximizes a negative exponential
utility function of the form defined in equation (1). The asset’s eventual value
is given by the random variable ¥, where ¥ is normally distributed with
mean ¥, and variance 1/p,. All traders initially have N(y,,1/p,) as their
(common) prior on asset value. We make the usual assumption that all
random variables in the model are independent.

Our interest is in the market statistics that arise in a competitive economy
with a large number of traders. We develop these statistics by analyzing a
market with N traders and providing results as N — «. We refer to results
obtained by taking the limit as the number of traders grows large as results

! Note that this information includes not only the direction of the trade, but its magnitude as
well.

2 It is easy to calculate this revealing equilibrium in the Grundy-McNichols and Brown-
Jennings models. If each trader conjectures that price and his own net trade is revealing then his
demand depends only on the mean signal. His demand and price then reveal the per capita
supply as well as the mean signal.
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for the large economy. Because traders are risk averse, movements in the
price elicit portfolio rebalancing trades. In addition, trade may also occur in
response to new information on the asset’s true value. Each trader in our
economy receives an informative signal in every period. We divide the traders
into two groups, with N; = uN traders in group 1 and N, = (1 — w)N in
group 2. The traders in each group receive signals from a common distribu-
tion, but there are different distributions for the two groups. Formally, each
1nformed trader ¢ in group 1, i=1,..., N;, receives a signal at date ¢ of

=y¢y+w + e! where w, is a common error term distributed N(0,1/p,).
The e! represents an idiosyncratic error which is distributed N(0,1/ o).
Similarly, trader i in group 2, i = N; + 1,..., N, receives signal y; = ¢ + w,
+ &! where each & ~ N(0,1/p%). We keep p2 fixed (and known) to reduce
the complexity of our presentation.

The precision of group 1’s 51gnals (the p!) are random variables.’® All
parameters other than the p!’s are known to all traders, but each pl is
known only to traders in group 1. This randomness in precisions means that
the “quality” of signals varies over time. Consequently, the underlying infor-
mation structure is complex, in that both the level and quality of signals are
unknown.

Each trader begins with zero endowment of the risky asset and some
exogenous endowment, N, of the riskless asset. For simplicity, we set the
price of the riskless asset at one. As the utility function is negative exponen-
tial and the asset’s eventual payoff has a normal distribution, it is well
known that a trader’s demands for the risky asset will be independent of his
wealth. Our interest is in the Walrasian equilibrium price and volume of the
risky asset. To calculate these equilibrium statistics, we need only find
traders’ demands for the risky asset and find the price that clears the market
(i.e., makes excess demand zero).

To make it easier to write asset demands, note that for traders in group 1
each signal y; is distributed N(y,1/p;") where ot = pyot/Cpp + p)M
Similarly, for traders in group 2 each y; is distributed N(y,1/p°?) where
p*2 = p,p%/(p, + p?). Conditional on w,, each y; is distributed N(6,,1/p, )
for traders in group 1 and N(6,,1/p?) for traders in group 2, where 6, = ¢ +
w,. So by the Strong Law of Large Numbers, the mean signal in each group,
3! and 32, converges almost surely to 6, as N — . In the large economy, the
mean signal is almost surely equal to the true value plus the common error.

Initially, we consider a two-period version of the model, and then extend
our results to the multiperiod version. Following Brown and Jennings, we

13 At this point, we place no assumptions on the p, stochastic process. In the following section
some additional structure will be needed.

4 This is the exogenous distribution of trader i’s signal from trader #’s point of view. He knows
that the signal has unknown mean ¢ and known variance 1/p;. Using standard Bayesian
updating (see DeGroot (1970)), the expected value of the asset given signal vy is (po Yy +

Ptyz)(f’o +p8)” L
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assume that traders have myopic, or naive, demands so that each trader
chooses his demand to maximize expected utility on a period by period
basis.’® Denoting the price of the risky asset by p;, the first period demand
for the risky asset for each trader i in group 1 is given by

po(o — p1) + pi'(¥i —py) 9

and by
po(to — p1) + p*2(y} — py) (10)

for each trader i in group 2. The equilibrium first-period price for an economy
with N traders is then given by

 poto + ppi'yi + (1 — p)pyi

1D
po + mpit + (1 — w)p*

141

By the Strong Law of Large Numbers we know that in the large economy,

_ Potbo + (Mpfl + 1 - ,U«)Psz)el

P = - p (12)
' po + kpi + (1 — w)p*?

An important property of this equilibrium price is that it is not revealing.
Because traders in group 2 do not know p§ they cannot infer the signal 6,
from the equilibrium price. Hence, while prices reflect the aggregated value of
the underlying signals, these traders do not have enough information to
discern what this value is. The conditional distribution of 6, given price is
not normal, so any multiperiod analysis with conditioning on price alone
would be quite complex. Traders in group 1, however, do know p{! and p*?, so
observing the equilibrium price tells them 6,, which is everything that can be
known about the underlying asset.

Because traders in group 2 cannot recover 6, from price alone, there is a
reason for them to look at volume. The first period volume can be found by
summing the absolute values of demands at price p, and dividing by 2. As it

!5 Ideally, each trader would predict the stochastic process of prices, given his current
information, and then solve the intertemporal decision problem taking potential capital gains
into account. This problem is tractable if and only if future prices are normally distributed. When
precisions are known this occurs and we have solved the resulting dynamic programming
problems. In this case, the value function is negative exponential in wealth, so the only change
from the analysis in the text is a change of parameters in demands and thus prices. With random
precisions we cannot obtain a closed-form solution to the decision problem and we have thus
chosen the approximation of myopic demands.
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will be easier to consider per capita volume, we define this as

11 (M , _
V, = IN i§1| po(thy — py) + pi' (i —P1)|
N -
+ X oGy —py) +p%2(yi — pDI]. (13)
i=N;+1

Inspection of the volume definition in equation (13) reveals an immediate
problem in analyzing the properties of this market statistic. Because volume
is based on absolute values of the demands defined in equations (9) and (10)
its distribution is complicated. Unfortunately, while demands involve nor-
mally distributed random variables, volume per se cannot be normally dis-
tributed. Consequently, if we are to understand the market information
conveyed by the volume statistic we must find a way to describe its statis-
tical properties. Proposition 1 provides this characterization of the volume
statistic.

PROPOSITION 1: In the large economy, given 8., per capita volume, V,, is given
by

s1 10 13172
Lad P1 (5(P1) )+81

P

Sl(p{)l/z) ) (D( —al(pi)”z)

21" (pH"? pi’ pit pi'
1 -pw p°2 82(p2)1/2
+ 2 (p2)1/2 p32
52( 2\1/2 _82( 2)1/2
p p -

where ¢ is the standard normal density, ® is the standard normal cumula-
tive distribution function and &' = py(¥, — py) + pi(0; — py), i =1,2.

Proof: All proofs are given in the Appendix.

From Proposition 1 and equation (12) we know the market statistics for
price and volume in period 1. The question of interest is what information do
these market statistics provide? We know from our earlier discussion that
price alone is not revealing, so traders cannot infer the noisy signal value 6,
from just the market price. However, if traders observe both the price and the
volume, then potentially the volume information can provide sufficient addi-
tional information about 6.

To determine the value of looking at volume, we need to separate out the
information generated by prices from that generated by volume. From the
volume equation it is apparent that the volume statistic includes both 6, and



Market Statistics and Technical Analysis 165

pi. Using the equilibrium price equation we know that

01 — p1 = polp1 — Po)/( ,U«Pfl + (1 = wp?). (14)
Substituting for 6, allows us to write the volume statistic as
sl 51( 1)1/2 . 51( 1)1/2 —8X( 1)1/2
Ld p ( 1\ P1 + 81 1\ P1 % 1\ P

sl 1 sl sl
P1 P1

P

. 32( 2)1/2 _32 2)1/2
+af(¢(—%— Y L (15)
p p

py’
pit + (1 — wp*?

where

szpo(lh_‘//o)('u —1),f0rj=1,2.

Using this expression for volume, we now investigate how volume is related
to the underlying parameters in the market. We show that given price,
volume conveys information about signal quality, pi, which can then be used
in the price equation to make an inference about 6;.

Calculation shows that if p] € (p?, p,), then volume is increasing the
precision of group 1’s signal. To explain why this relationship occurs, and how
traders use it, we focus on the simple case where p%2 =0 and p} > 0. As a
first property note that given a price p;, the effect of changing the precision,
pi, on volume is given by

o [~ Cop + pD) ( Pu ) (p, — p1)
IV, /dpi = —¢| 6 ) (16)
1/ 9p1 9 ¢\ 9, Pw( p})1/z ) (p%)1/2 (Pw N p%)l/z

Thus, for any price, p,, per capita volume is increasing in the precision, pi, of
group 1’s signal for p! < p, and decreasing in p} for pi > p,.

The intuition for this result can be seen by considering what happens when
group 1 receives low quality signals, i.e., p} near 0. In this case, traders in
group 1 receive very dispersed signals, but place little confidence in them. At
the extreme value of p} = 0, there are no useful signals and the only possible
equilibrium occurs at p, = ¢, and volume of zero. Alternatively, if p] is
large, i.e., p; > p,, then volume is again low, but for the opposite reason.
Now, group 1 receives high-quality signals, but they are also highly corre-
lated. As p} — =, group 1 traders all receive the same signal and so do not
trade with each other. Now the only trade occurs between group 1 and group
2. This suggests that simple linear predictions of the correlation between
information and volume are seriously misspecified; low volume may be as
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indicative of new information as is high volume. Volume is related to disper-
sion of beliefs and the link between dispersion and information is complex.

This relationship between price, volume, and the quality of information can
perhaps best be investigated by examining the actual equilibrium outcomes
for a specific economy. Because our model provides closed form solutions, it is
possible to graph these outcomes for a specific set of parameter values. As a
starting point, let the initial prior mean ¢, = 1, and let the fraction of
traders in group 1, u, be 0.5. For simplicity, let both the precision of the
common error in the signal, p,, and the precision of the prior, p,, be 0.5.
Finally, let p? =0, so we know that p! > p?. Figure 1 is generated by
selecting, for each pj in a grid, various 6’s and then calculating the equilib-
rium price and per capita volume.

Slices of Figure 1 for fixed precision, p], suggest a convex relationship
between price and volume. This is in fact true generally, not just for the
specific economy graphed in Figure 1. Volume is convex in price with its
minimum at price equal to the prior expected value of the asset.

vol

Figure 1. The relation of volume to equilibrium price and information precision. The
figure is constructed for an economy with the prior mean ¥, = 1, p, = py = 1, p% = 0, and the
fraction of traders receiving information wu = 0.5. The graph is generated from equation (15)
which shows per capital volume (vol) as a function of the precision of group 1’s signals ( p;) and
the equilibrium (p,).
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PROPOSITION 2: In equilibrium volume, V| is strictly convex in price and
achieves its minimum at p, = .

This convexity result in Proposition 2 follows from the fact that the second
derivative of volume with respect to price is positive everywhere and that the
first derivative is zero at p = ¢,. To see why this occurs, first note that
P = i, can happen only if 6, = p = ¢, so that on average traders posterior
means are unchanged from their prior mean. Trade occurs as individuals
have differing signals, but it is limited. As the mean signal, 6,, moves away
from ¢, and thus price moves away from s,, on average posterior means are
changed and the first term in the demand equations (9) and (10) adds to
trade. This term reflects portfolio rebalancing in which even a trader with no
new information (i.e., p{’ = 0) will engage. This convex, or V-shaped, relation-
ship can be seen from slices of the curve in Figure 1, but it is even more
vividly illustrated in Figure 2 which provides a plot of equilibrium per capita
volume against equilibrium price. This figure is drawn for an economy in
which ¢y =y¢=1, py=p, =2, p>=0, u=0.5 and p! is uniformly dis-
tributed on (0, 1). The graph was then constructed by drawing 500 pairs of
(64, p}) from their distributions and calculating the equilibrium for each pair.

Interpreting the prior mean ¢, as the previous price, this graph also
illustrates the obvious positive correlation between volume and the absolute
value of price changes. Figure 3 shows this with a plot of volume against the
absolute value of price change for the observations in Figure 2. As is appar-
ent, large price changes (either positive or negative) tend to be associated
with large volume. Hence, it is the case that absolute price movements and
volume are positively related.

0

T T T T T
0.8 0.9 1 1.1 1.2
price
Figure 2. The relation of price and volume. The figure is drawn for parameter values
Yo=9¥=1, py=p, =2, p2=0, and = 0.5 and p} €[0,1]. The figure is constructed by
drawing 500 pairs of (6;, p}) from their distributions and calculating the resulting equilibrium.
Each point corresponds to the resulting equilibrium price and volume for a single draw.



168 The Journal of Finance

0.2

volume
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Ip-wol
Figure 3. The relation of volume to the absolute value of price changes. The figure is
drawn for parameter values ¢, = y =1, py = p, = 2, p2 =0, and p = 0.5 and p] € [0, 1]. The
figure is constructed by drawing 500 pairs of (8;, p1) from their distributions and calculating the
resulting equilibrium.

What is particularly intriguing about these results is their remarkable
similarity to the findings of empirical researchers. As reported by Karpoff
(1987), a V-shape has been found by virtually all empirical investigators of
the price-volume relation in equity markets. Moreover, the relation between
absolute price changes and volume has been established for both equity and
futures markets. In more recent work, Gallant, Rossi, and Tauchen (1991)
use time series data to demonstrate the V-shaped pattern between price and
volume, and also report that the dispersion of the distribution of the price
changes increases uniformly with volume. While the consistency of these
results is impressive, what is not well established is why these relations
exist. A related question is how, if at all, these phenomena are related to the
existence of information.

These issues can be addressed for our sample economy by examining how
both the quality (the precision) and the quantity (the dispersion) of informa-
tion affect the price-volume relation. Figure 4 depicts the resulting price-
volume equilibrium outcomes for three different information precisions. What
is most striking is that while greater information quality (i.e., larger preci-
sion) reduces the dispersion of the points, it does not change the general
V-shape of the relation. Indeed, the graph suggests that as the precision
approaches its limit, the price-volume relation is characterized by a simple
V-shape. These results on information quality suggest a remarkable robust-
ness to the V-shape reported by empirical researchers, but are not consistent
with the dispersion results reported by Gallant, Rossi, and Tauchen.

The effect of the quantity of information is perhaps even more interesting.
Figure 5 plots the price-volume outcomes for three scenarios corresponding to
10 percent of the traders being in the high-precision group, 50 percent of the
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Figure 4. The relation of price and volume for different information quality. The
figures are drawn for parameter values ¢, = ¢y = 1, u = 0.5, py = p, = 2 and p% = 0. The top
panel sets p! = &, the middle panel sets p} = %5, and the bottom panel sets pj = 155. Each
panel is constructed by drawing 2,000 pairs of (6;, p;) from their distributions and calculating
the resulting equilibrium. The greater the precision, the better is the information so the bottom

panel corresponds to greater information quality.
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Figure 5. The relation of price and volume for different levels of information dissem-
ination. The figures are drawn for parameter values ¢, = ¢ = 1, p, = p, = 2 and p? = 0, and
+. In the top panel, u = 0.1, in the middle panel, x = 0.5 and in the bottom panel, u = 0.9.
Each panel is constructed by drawing 2,000 pairs of (8,, p!) from their distributions and
calculating the resulting equilibrium. The higher is u, the greater the information dispersion so
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the bottom panel corresponds to the most information dispersion.
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traders being in this group, and 90 percent of the traders being in this group.
As information is more widely disseminated, the top of the distribution
flattens out, with the V-shape noted earlier virtually disappearing. The
dispersion of points, however, increases dramatically, corresponding quite
closely to the time series relation depicted in Gallant, Rossi, and Tauchen. In
the 90 percent high-precision scenario, it is still the case that the absolute
value of prices changes and volume are positively related. What our results
suggest, however, is that the sensitivity of this relationship (the slope) is
greatly affected by the extent of information dissemination. We intend to
explore these information quality and quantity effects further in future work.

Given this role for volume, it now becomes apparent why observing price
and volume together is more informative than observing price alone. A trader
observing only a high price is unable to determine whether the price is high
because of a high average signal (the 6,) or an average signal with a high
quality pl. In fact, he is left with a curve of (6;, p}) that are consistent with
the price. Volume picks up the quality of the signal in a way different from
price because, unlike price, volume is not normally distributed. In our model,
as Figure 1 and equation (15) suggest, there are two (0,, pi) pairs that are
consistent with an observation of price and volume. One pair has p! > p, and
a low 6,, the other has p] < p, and a high 6,. So looking at volume in
addition to price reduces the range of possible values of 6; to only two points.

The role of volume as a signal of the precision of beliefs means that the
volume statistic provides information to the market that is not conveyed by
price. Moreover, this information is related to information about the asset
value and not to exogenous liquidity or supply shocks. This role for volume is
remarkably similar to that claimed by proponents of technical analysis. For
example, Pring (1991) explains that “Most indicators [of market movements]
are a statistical deviation from price data. Since volume indicators are totally
independent of price, they offer a more objective view of the quality of the
price trend.” In our model, this “independence” of volume is also what allows
the quality of information to be inferred from market statistics. It becomes
natural to watch volume because it complements the information provided by
price. A trader watching only prices cannot learn as much as a trader
watching both prices and volume and so faces an unnecessary penalty if he
ignores the volume statistic.'®

In the next section, we extend our model to a multiperiod setting in order
to investigate the time series properties of price and volume. To make this
analysis tractable, we want the equilibrium in each period to be revealing.
(Otherwise, traders will have priors which are mixtures of normals and are
thus not normal) Equation (15) and Figure 1 suggest that, given price,
volume will reveal p} as long as p} > p® and p; is known to be above p, or
known to be below p,. We assume that p; € ( p?,p,) for all ¢.

16 This complementary role of price and volume is also characteristic of technical analysis
techniques. Pring (1991) notes that “It is therefore essential to relate the movement of the
volume oscillator (or moving average) to the prevailing movement in price.” For a discussion of
techniques involving volume see Pring, chapter 18.
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PROPOSITION 3: If p} € (p2,p,), then in the large economy ( p}, 6,) is revealed
by (py, V).

The proposition demonstrates that under our assumptions market statis-
tics are revealing. Of course, the value of the asset is not known to anyone
with certainty because of the common error term, and so it cannot be
revealed by these market statistics. Nonetheless, by observing volume in
conjunction with price traders can infer all the information available in the
market. However, since traders do not know the true asset value (the ) it is
not the case that the price and the volume reveal complete information. This
lack of perfect revelation means that all traders face a learning problem in
determining the value of the underlying asset. Since new signals arrive every
period, it may be that the sequence of price and volume statistics provides
information to all market participants. If this is the case, then technical
analysis of past market statistics can be valuable. In the next section we
begin our investigation of this role of technical analysis by extending our
model to a multiperiod setting.

ITII. Equilibrium Price-Volume Time Series

To examine the time series of price and volume we extend the asset market
model of Section II to multiple periods. Period one price and volume reveal 6,
so upon entering the second trading period, traders again have a common
prior on the asset’s eventual value. This prior is, by Bayes’s rule, a normal
with mean (p, 0, + py¥,)/(p, + p,) and variance (p, + p,) *. Traders in
group 1 then receive signals y5 = i + w, + e}, where the precision of the e
distribution is pi. Similarly, traders in group 2 receive signals y} = ¢ + w,
+ &5 where the precision of the &} distribution is p2. The market proceeds as
in period one with the only differences being the new common prior, the new
randomly drawn precision, the new randomly drawn signals, and the fact
that endowments are now equilibrium period one demands. All traders are
engaging in technical analysis in the sense that their behavior is influenced
by their prior which in turn depends on past market statistics. At this point,
however, the use of past data is dictated by our timing convention on when
market data is available. It is more interesting to examine the effect of data
from more than one previous period.

Our argument for revelation of information through market statistics is
constructed inductively. Suppose that market statistics through period ¢ — 1
are revealing. Then upon entering trading period ¢, the traders’ common
prior is a normal with mean

t—1

5t41=[pw by 07+P0‘!/0]/[(t_1)'Pw+P0] an

=1
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and variance (p,_;)"! =[(¢ — 1) p, + po] *. The traders’ gross demands for
the risky asset are then given by

pr-1(6,-1 — ;) + oyl = p) (18)
for each trader i in group 1, and by
ﬁt—l(ét—l —pt) + Psz(yti _pt) (19)

for each trader i in group 2.
An application of the analysis in Section III shows that for the large
economy the equilibrium period ¢ price is given by

_ ﬁt—lat—l + (upft + Q- wp*)6,

p ~ 5 S (20)
‘ Py + mpit + (1 — w)p*?
Per capita volume in period ¢ for the large economy is
Foa n s1( 4,1 A n
Vi=E 9 pt—l(ot—l _pz) + oy —p) — pt—z(ot—z _pt—l)
Q-w,, -
—Pts,ll(ytl—l _pt—1)| + '—2—‘ P¢71(0t—1 _pt) + PSZ(J’t2 -p)
_/A)t—2(5t—2 _pt—l) - Psz(ytz—l _pt—l)l 21

where the expectation is with respect to the conditionally independent ran-
dom variables y! ~ N(6,, 1/p}), yt, ~N(6,_;, 1/p} 1), y2 ~N(6,, 1/p%)
and y2 , ~ N(,_,, 1/p®).M

This volume expression differs from that in period one because traders now
have endowments that are their equilibrium period ¢ — 1 demands. Traders
do not know each individual’s equilibrium period ¢ — 1 demands but they do
know p,_,; and our induction hypothesis is that they have inferred p;_;, p,_,
and 6, , from past market statistics. So everything in the per capita volume
expression other than y!, y!_ |, yZ, y2 ; and p{ is known. Calculation similar
to that in the proof of Proposition 1 shows that per capita volume in period ¢
for the large economy is

V, = g[zu})*(p(a;xg) + 81 (®(s1xl) — d(~5)xD)]

1 — —
e L o) g025) + 82(05750) — 0(-82x)], (@2)

" The expression p,_5(8,_5 — p,_1) + pfi1(¥,_1 — p;_1) is a random variable representing
the period ¢ endowment of group i traders. Traders do not know any individual’s endowment,
but they do know the distribution of endowments.



174 The Journal of Finance
where

9\ —1/2 9\ —1/2
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II

d

6t2 = ﬁt—l(ét—l _Pt) + Psz(et - P - ﬁt—z(ézﬂ _sz1) - PSZ(0t~1 — P, 1)

Given our induction hypothesis, the only unknowns in p, and V, are p; and
0,. Now, an argument parallel to that in Proposition 3 shows that (p,, V,)
reveals ( p}, 6,). So, if past market statistics have revealed past information,
current market statistics will reveal current information. As a result, the
price and per capital volume given above are equilibrium market statistics.

PROPOSITION 4: Suppose p! € (p?, p,) for all t. In the large economy, the
equilibrium price and per capita volume time series are given by (20) and (22).

In this economy, the equilibrium price converges almost surely to . This
occurs because all traders are using price-volume data to infer a sequence of
6,’s each of which is normally distributed with mean . So, by the Strong Law
of Large Numbers each individual’s posterior mean, 6,, is converging to
and the posterior variance is converging to zero. In the limit economy,
everyone knows i, price is  and no trade occurs.!®

One would be tempted to conjecture from this that trade vanishes, ie.,
volume goes to zero, as time proceeds. This conjecture is false: Volume in the
limit economy is zero, but the limit of volume as time proceeds is not zero. So
the limit economy is not a good approximation to an economy after many
periods.

The behavior of the price and volume time series for an economy with
bo=v=1, po=p, =2, p2=0, =05 and p; uniformly and indepen-
dently distributed on (0,1) is illustrated in Figure 6. The equilibrium time
series was constructed by drawing a sequence of 1,000 pairs of 6, and p; and
constructing the equilibrium at each date given the draws in the sequence up
to that date. For this economy, price converges to ¢ = 1 and volume has a
nondegenerate limit distribution.

Trade does not disappear because although traders’ beliefs are converging
to a common belief their precisions are diverging at the same rate. Intu-
itively, these effects can be explained by noting that in early periods traders
may receive information indicating a wide discrepancy of price from true
value, but because they are not very sure of the true value (i.e., their
precision is low), they take limited positions. In later periods, when prices are

18 Of course any discussion of the limit is straining our story of an asset with an eventual value
of ¢ a bit too much. But this is intended to be a discussion of the general tendencies of price and
volume.
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Figure 6. The time series behavior of volume and price. The figures are constructed for
an economy with ¢ = ¢y =1, pg =p, =2, p2 =0, and p = 0.5 and p;} uniformly and indepen-
dently distributed on [0, 1]. The equilibrium time series was constructed by drawing a sequence
of 1,000 pairs of 6 and p! and constructing the equilibrium at each date given the draws in the
sequence up to that date. Each point depicts the equilibrium actions at that date.

close to true values, traders are more confident (precisions are high) and
hence take large positions to exploit even small price discrepancies. Our
results on the distribution of volume dictate that these two effects essentially
offset. Thus, volume converges to a limit distribution which is very different
from volume in the limit economy.

IV. Technical Analysis

Traders in the multiperiod economy developed in Section III are engaging
in technical analysis. Their demands depend on past market statistics through
their dependence on the sufficient statistic 6,_;. Further, knowledge of the
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past helps in interpreting current market statistics. A trader who does not
engage in technical analysis, and thus does not know p,_; and 6,_, cannot
fully infer current information from the current market statistics. Here
traders need to remember the past; they cannot glean everything from
current data. )

To make the value of technical analysis more precise let df(pF, s, p) be
uninformed trader i’s demand for the risky asset at time ¢ given equilibrium
price p/, prior mean lp and prlor precision p.!° Then given a wealth of w/ at
the beginning of date ¢, trader i’s date ¢ + 1 random wealth (assuming that
in period ¢ + 1 the asset finally pays off) will be

wiA(pF, b, B, w) = wi + di(pF, 0, 5) Ly — pF], (23)

where the predicted distribution of ¢ is N(i,1/p). Thus trader i’s equilib-
rium expected utility is

E [—exp{ le pE U, P, ” (24)

Note that this expected utility depends on the trader’s beliefs because of its
explicit dependence on % and p and because the expectation is taken using
the distribution N({,1/p).

A technical analyst believes {r="0,_, and p = p,_,. A trader who does not
use past data believes ¢ = Yo and p = p,. This divergence in beliefs allows
us to calculate the value of technical analysis at time ¢:

E[Ew[—exp[—wti+l(p;",5t71, Pe—1 ‘//)”52—17 ﬁt—l”

—E,,,[—exp[—w;ﬂ(l’;k,¢’0,p0,1/l)”. (25)

The first expected value in equation (25) is the prior expected value of the
ability to condition demand on the data revealed by market statistics through
period ¢ — 1, while the second expected value is simply the expected utility
when the trader does not learn from the past. The difference between these
expected values is thus the amount that an uninformed trader would be
willing to pay at date ¢ to know all past market statistics. (In this calculation
we assume that this trader will have no effect on prices as he is one of a
countable infinity of traders). This value is clearly nonnegative because the
trader can always ignore the data if it is not useful. In our economy, the value
will be strictly positive as 5t_ 1 is a consistent estimator of . Proposition 5
demonstrates that the value of technical analysis depends on the quality of
information.

PROPOSITION 5: The value of technical analysis at time t is 1/2(t — 1), [(,
—pf)? + 1/py] > 0. This value is increasing in p, and decreasing in p,.

One aspect of our results that should be stressed is that technical analysis
is valuable not because of volume or any other specific statistic but rather

19 This is the demand by a trader who does not receive a signal at date ¢. The calculation for a
trader who has received a signal is similar but more complex.
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because there is some underlying uncertainty to be learned in the economy.
Technical analysis is valuable for all traders in our model. Where volume
matters is in affecting the benefits of technical analysis. Though traders gain
from watching prices, they do better still by watching prices and volume.

That technical analysis is more valuable if past market statistics impound
higher-quality information (i.e., p, is large), and is less valuable if there is
less to be learned from market data (i.e., p, is large) is an interesting result
of our analysis. Because technical analysis helps traders interpret current
information, watching the sequence of market statistics allows traders to
correctly update beliefs. It seems reasonable that the value of doing so
depends on the properties of the information structure. If traders already
know a lot about the asset (their prior precision p, is large) or information in
general is not very good (p, small) then watching the market is not very
valuable.

The properties of technical analysis derived above suggest that it may be
particularly appropriate for small, less widely followed stocks. Such firms
tend to have greater uncertainty about their future prospects and hence have
a low prior precision. Moreover, such stocks may be more affected by private
rather than public information, meaning that the effect of private signals
may be higher. For such stocks, technical analysis of market statistics may
play an important role in providing information to the market and, conse-
quently, efficiency to the price.

V. Conclusions

We have investigated how technical analysis can be valuable to traders in
an economy in which the only uncertainty arises from the underlying infor-
mation structure. In our model, technical analysis is valuable because current
market statistics may be sufficient to reveal some information, but not all.
Because the underlying uncertainty in the economy is not resolved in one
period, sequences of market statistics can provide information that is not
impounded in a single market price.

Where we believe our results are most interesting is in delineating the
important role played by volume. In our model, volume provides information
in a way distinct from that provided by price. As is true in most rational
expectations models, price impounds information about the average level of
trader’s private information. But unique to our model is the feature that
volume captures the important information contained in the quality of traders’
information signals. Because the volume statistic is not normally distributed,
if traders condition on volume they can sort out the information implicit in
volume from that implicit in price. We have shown that volume plays a role
beyond simply being a descriptive parameter of the trading process.

Our focus on the quality, or precision, of information suggests that the
value of particular market statistics may vary depending upon characteristics
of the information structure. While we have discussed the potential applica-
tions of technical analysis for small, thinly followed stocks, it seems likely
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that even (or perhaps, especially) in active markets volume may play an
important role. The existence of the Dow-Jones “Rumor Wire” suggests that
even “bad” (in the sense of imprecise) information can affect stock prices, so
that using the information conveyed by volume may be particularly useful to
traders operating in such volatile markets. Indeed, one criticism of program
trading voiced by professional traders is that it distorts the information
typically provided by trading volume. As our analysis here suggests, introduc-
ing trading volume unrelated to the underlying information structure would
surely weaken the ability of uninformed traders to interpret market informa-
tion accurately.

Appendix

Proof of Proposition 1: We first provide a useful lemma.

51/2 -$ 1/2
o5 ) o[ =]
Y Y

Proof of Lemma 1: Note that Pr(lyy + al| < a) =Pr(—a<yy+a<a)=

LEMMA 1: Let y ~ N(6,1/p), then

v 1 8p1/2 2
El|yy + al]]l =2 exp ——( " ) + 6

V2mp 2

for § = a + v0, and ® the cumulative normal.
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for z a standard normal. Thus, the density of the random variable |yy + al is
fa) = p'2 /Y[ d(p"/2/yNa — a — v0)) + ¢(p'/?/yX—a — a — y0))], for ¢
the standard normal density. The claim in the lemma now follows by comput-
ing the integral [faf(a)da. QE.D.

po(thy — p1) + p*2(¥1 — py)

Rewriting equation (13) we have:

“ 1 N; .
Vi= 2 ﬁziga po(¥o — p1) + pi*(yi — p1)

ZFZ

u i=N;+1

(1—M)[1 N
.+__...—.

],




Market Statistics and Technical Analysis 179

By the strong law of large numbers as N — o this sequence of random
variables converges almost surely to

P0(¢0 *Pl) + PS2(3’2 _P1)

n
EE po(¥o — py) + pit(y' — py)

1-w
+——2——E

where
y' ~N(6,,1/p1) and y* ~ N(6,,1/p?).

Using Lemma 1 we have limit per capita volume almost surely equal to the
expression given in Proposition 1.

Proof of Proposition 2: Differentiating volume, equation (15) in the text,

with respect to p, yields
oV, ob) [ Sf(pb”z) q)( éapn”)]
o s1 - T st

ap, 2 dp, P1 P1

ps2 ps2

(1~ p) 982
+ 1 1 [q)
2 dp,

312(,)2)”2) ) q)(_ 52 (M) ”

At p, = ¢, we have §} = §2 = 0. Thus, dV,/dp, = 0 at p, = .
The second derivative of volume with respect to price is

A 2 1/2 A 1/2
9?2V, a8\ (" 81D
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o\ 2 1/2 A 1/2
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o i ,
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Thus, volume is convex in p; and achieves its minimum at p; = ¢,.

Proof of Proposition 3: Differentiating volume, equation (15) in the text,
with respect to p] yields

Vi wlf puCp, —pD) | [81Cp, + pD) 361 81(p, + p})
T~ 9 1 112 i |t s ® 151/2
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The term involving the normal density, ¢, is positive if p, > pi. The terms
involving the differences of cumulative normals are also positive as 3, /dp;
the difference of the cumulative normals always have the same sign as long
as p; > p2 Thus, dV,/dpi > 0 for p} € (p2,p,).

So, given the price p, and the equilibrium pricing equation, the only
unknown in volume is p; and volume is strictly increasing in p}. Thus, given
p, volume reveals pl. Then 6, is revealed by the pricing equation (12).
Q.ED.

Proof of Proposition 4: Given the induction hypothesis the proof that
(pi, 0,) is revealed by (p,, V,) follows directly from the proof of Proposition 3.
We know by Proposition 3 that ( p{, 6,) is revealed by (p,, V,). This completes
the induction argument. Now the fact that (20) and (22) describe period ¢
equilibrium follows from the calculations in the text.

Proof of Proposition 5: Calculation shows that the value of technical
analysis given by equation (25) is

3t = D7 0, [ = PP + 1/po].

This value is strictly positive, increasing in p, and decreasing in p,.
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